
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
DESIGN OF DIGITAL CONTROL ALGORITHMS FOR

UNMANNED AIR VEHICLES

by

Steven J. Froncillo

March 1998

Thesis Advisor: Isaac. I. Kaminer

Approved for public release; distribution is unlimited.

•i'Jii ̂ m&v,

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 1998
3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE

DESIGN OF DIGITAL CONTROL ALGORITHMS FOR UNMANNED AIR
VEHICLES

6. AUTHOR(S)

Froncillo, Steven J.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING
ORGANIZATION REPORT
NUMBER

10. SPONSORING/
MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES ~~

The views expressed in this thesis are those of the author and do not reflect the official policy or position of
the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Recent advances in the design of high performance aircraft, such as fly-by-wire controls, complex
autopilot systems, and unstable platforms for greater maneuverability, are all possible due to the use of
digital control systems. With the aid of modern control tools and techniques based on state-space methods,
the aerospace engineer has the ability to design a dynamic aircraft model, verify its accuracy, and design and
implement the controller within a matter of a few months. This work examines the digital control design
process utilizing a Rapid Prototyping System developed at the Naval Postgraduate School. The entire design
process is presented, from design of the controller to implementation and flight test on an Unmanned Air
Vehicle (UAV).

14. SUBJECT TERMS ~ ~

Unmanned Aerial Vehicles, Rapid Prototyping Systems, Hardware-In-The-Loop Simulation,
AROD, FROG, MATRIXx, SystemBuild

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified
19. SECURITY CLASSIFI-CATION
OF ABSTRACT

Unclassified

15. NUMBER OF
PAGES

100

16. PRICE CODE

20. LIMITATION
OF ABSTRACT

UL

11

Approved for public release; distribution is unlimited

DESIGN OF DIGITAL CONTROL ALGORITHMS FOR UNMANNED AIR VEHICLES

Steven J. Froncillo
Lieutenant Commander, United States Navy

B.S., University of Rhode Island, 1983

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 1998

Author:
Steven J. Froncillo

Approved by:

Isaac I. Kaminer, Thesis Advisor

•7?,^#V^
Russell W. Duren, Second Reader

Gerald H. Lindsey, Chairman
Department of Aeronautics and Astronautics

111

IV

ABSTRACT

Recent advances in the design of high performance aircraft, such as fly-by-wire

controls, complex autopilot systems, and unstable platforms for greater maneuverability,

are all possible due to the use of digital control systems. With the aid of modern control

tools and techniques based on state-space methods, the aerospace engineer has the ability

to design a dynamic aircraft model, verify its accuracy, and design and implement the

controller within a matter of a few months. This work examines the digital control

design process utilizing a Rapid Prototyping System developed at the Naval Postgraduate

School. The entire design process is presented, from design of the controller to

implementation and flight test on an Unmanned Air Vehicle (UAV).

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

II. SAMPLED-DATA SYSTEMS 5

A DISCRETE MODELS OF SAMPLED-DATA SYSTEMS 5
B. THE Z-TRANSFORM 9
C. ANALYSIS OF DISCRTE-TIME SYSTEMS 11
D. SIGNAL ANALYSIS AND DYNAMIC RESPONSE 18
E. SAMPLED-DATA SYSTEMS ANALYSIS 20
F. DISCRETE EQUIVALENTS BY NUMERICAL INTEGRATION 26

III. INTRODUCTION TO RAPID PROTOTYPING 29

A. RAPID PROTOTYPING SYSTEM ARCHITECTURE 30
B. XMATH/SYSTEM BUILD 31
C. REALSIM SERIES RAPID PROTOTYPING 36

IV. HARDWARE-IN-THE-LOOP (HITL) 45

A. HARDWARE DESCRIPTION FOR AROD 45
B. CONVERSION SUPERBLOCKS 46
C. SENSOR CALIBRATION 49
D. INPUT/OUTPUT CONNECTIONS 50

V. DIGITAL CONTROL DESIGN 53

A. MODELING ACTUATORS AND SENSORS 53
B. FEEDBACK CONTROLLER DESIGN 57
C. HARDWARE-IN-THE-LOOP TESTING 59

VI. ALTITUDE CONTROLLER DESIGN PROJECT 63

A. DESIGN REQUIREMENTS 63
B. FROG AND AUTOPILOT MODELS 63
C. FEEDBACK CONTROLLER DESIGN 65
D. HARDWARE-IN-THE-LOOP TEST 72
E. IMPLEMENTATION AND FLIGHT TEST 72

VII. CONCLUSIONS AND RECOMMENDATIONS 81

A. CONCLUSIONS 81
B. RECOMMENDATIONS 81

APPENDIX A. HCE SCREENS FOR HITL PROJECT 83

APPENDIX B. ADITIONAL SUPERBLOCKS DIAGRAMS 85

LIST OF REFERENCES 89

Vll

INITIAL DISTRIBUTION LIST 91

Vlll

I. INTRODUCTION

The use of digital computers in the real-time control of aircraft has paved the way

to new aircraft designs that are faster, more maneuverable and safer than ever before.

With this growing emphasis on digital control design, new tools and techniques have

been developed to aid in the design and implementation of complex control systems.

Traditionally, control systems are developed using classical control design methods that

are costly and time consuming. Newer technologies, like rapid prototyping based on

modern control methods, integrate the design process and shorten the time required to

complete a control design from a few years to a few months.

The purpose of this thesis is twofold: develop the background material for an

Advanced Control of Aerospace Vehicles course, and design and flight test an altitude

hold controller for a UAV.

At the Naval Postgraduate School, students in the Aeronautical and Avionics

Engineering curriculum receive a full sequence of controls courses with the final course

being Advanced Control of Aerospace Vehicles, for which this thesis is written. This

course will introduce the students to the critical aspects of the design, implementation and

flight testing of the basic controllers for fixed-wing aircraft. The course examines both

classical (transform) and modern (state-space) control methods for designing complex

digital control systems.

The main focus is on the study of sampled-data systems, systems that have both

discrete and continuous-time components. Devices used for the interface between the

continuous and discrete components, the analog-to-digital converter and the digital-to-

analog converter, are covered in detail. This thesis will derive mathematical models for

each of these operations, and develop tools for analysis and synthesis.

The class is largely project oriented. Much of the class is concentrated in the

Avionics/Controls laboratory and the Unmanned Air Vehicle (UAV) laboratory. The

projects are centered on a Rapid Prototyping System (RPS) developed by the aeronautical

engineering department for flight testing control algorithms for unmanned air vehicles.

The system affords a small team the ability to test new concepts in guidance, navigation,

and digital control. The RPS consists of commercially available rapid prototyping

software with an open architecture design to allow for a wide range of applications. The

application software developed by Integrated Systems Incorporated (ISI), called RealSim,

allows students to participate in design projects from the initial concept stage to the flight

testing phase of the design process. This software has two main advantages:

• The ability to automatically generate higher-language code such as C for the

designed controller.

• The system utilizes industry standard I/O devices including digital-to-analog,

analog-to-digital, pulse width modulation, and serial capability, permitting easy

connections to hardware.

The test bed aircraft used is a UAV called FROG , shown in Figure 1.1. This UAV is

equipped with a complete avionics suite necessary for autonomous flight.

The accomplishment of this endeavor has led to a number of successful projects,

including voice controlled flight and an airspeed controller, and is paving the way for

more complex projects such as autonomous landing. This thesis will describe in detail

one such design project, the development of an altitude hold controller implemented in

the FROG using the RPS tools. The automation of the design process is completed in

three developmental phases:

• Feedback controller design. In this phase a model of the plant is created. The

controller is then designed through various methods of classical input/output

control techniques and/or modern state-space control techniques. The process

typically involves many iterations to satisfy specific design requirements.

• Hardware-In-the-Loop Testing. The feedback system is tested with some or

all of the actual hardware which will be used to control the aircraft. This is the

final validation of the controller prior to an actual flight.

• Implementation and Flight Test. The controller is implemented in the Fight

Management System used to control the FROG and then flight tested.

The design process described above is completed entirely with the RealSim series rapid

prototyping software and real-time control hardware integrated with the system.

Figure 1.1: VAW FROG

II. SAMPLED-DATA SYSTEMS

The systems and signals studied in the control of aerospace vehicles are referred

to as sampled-data systems and have both discrete and continuous components, see

Figure 2.1, where a continuous-time, or analog signal, is to be processed using a

computer or special-purpose Digital Signal Processing (DSP) chip set. The interface

between the continuous and discrete systems include the analog-to-digital (A/D) and the

digital-to-analog (D/A) converters.

u(k)
Zero-Order-Hold

(D/A)

u(t)
Plant
(CTS)

y(t) Sampler
(A/D)

y(k)

Figure 2.1: Sampled-Data System

The conversion of the a discrete to an analog signal by the D/A converter, which

usually uses a Zero-Order-Hold (ZOH), involves scaling the digital values and converting

them to a piecewise-constant continuous output. Where the conversion of the analog

signal to a discrete sequence by the A/D converter is accomplished by a sample-and-hold

circuit, called a Sampler.

This chapter will describe the operations of the digital-to-analog converter and

analog-to-digital converter and methods for obtaining discrete models of continuous-time

systems. Material presented in this chapter is in the form of classroom notes, for further

discussion refer to [Ref. 1,2,3].

A. DISCRETE MODELS OF SAMPLED-DATA SYSTEMS

In this section we establish a general method for obtaining the difference

equations that represent the behavior of the sampled-data system. The resulting

equivalent discrete system will then be analyzed using the sample-to-sample discrete

transfer function of a continuous system between a D/A and an A/D, as shown in Figure

u(k) ZOH u(0, Plant
P(s)

0

y(t). Sampler y(k),

u(k) Plant
P.,

y(k).

2.2.

Where

P =
\x = A-x + B-u

[y = C-x + D-u

Pd--
\xk+} =Ad-xk+Bd-uk

\yk=Cd-xk+Dd-uk

Figure 2.2: Equivalent Sampled-Data System

1. Digital-to-Analog Converters (D/A)

Digital-to-analog converters usually use zero-order hold or (ZOH): given a

sequence of samples, u(kT) at t = kT, and holding its output constant at this value until

the next sample is taken at / = kT + T to produce a continuous signal. The piecewise

constant output of the D/A is the signal u(t) that is applied to the plant. Thus, the value of

u(t) consists of steps as seen in Figure 2.3.

2. Analog-to Digital Converters (A/D)

The analog-to-digital converter samples the analog signal y(t) at discrete times and passes

them to the computer. The time interval between samples yk is called the sampling

interval T. The A/D converter has two functions: quantizing the sampled analog signal

into a discrete set of levels and coding the quantized representation into an acceptable

format.

In nil

i ■ i

k)

T 2r | |

"1 37' 47' 57

i i * ■

Output

u(t)

Input Digilal-lo-Analog
Converter
(DAC)

T IT

r
37" 47* 57"

Output

Figure 2.3: Digital-to-Analog Conversion

then

3. Discretization of Continuous-Time Systems

Consider a linear, continuous-time system

jx = A-x + B-u

\y = C-x + D-u'

x(t) = eA("U)) ■ x(t„) + jeA{"T) -B-u(T)-dT.
i„

To discretize let: t0 = kT; t = kT+ T and assuming u is held constant over the sampling

interval T (ZOH with no delay)

U(T) = u(kT) ; [kT < r < kT + T\

Then

kT+T

x(kT + T) = eA{T) ■ x(kT) + \eA{kr+r-T) .B-u{r)-dr
kT

Let

Z = (kT + T)-T

d{ = -dr,

then

r = kt=>4=T

Let x(kT+T)= x4+,,then

**+i = ßAr ■ Xu + \eH -B-uk-d$ (Eq. 2.1)
0

Define

AT 0 = e
T

o

The discrete equivalent of P

jxk+]=®-xk+r-uk

P<=\yk=C.Xk+D.uk <*•">

Note the equivalent discrete system is shift-invariant, since O and T are not functions of

k. Commands to discretize: Matlab--c2d, Xmath-discretize

EXAMPLE 2.1: Discretize the following CTS

x = -a-x + a-u a
P(s) =

y=x s+a

From equation 2.2

<$> = e

r

-a-T

r= \e~H ■{a)-d^ = {\-e-aT)
o

xk+.=e-aT-xk+(l-e-aT)-uk

yk=xk

8

B. THE Z-TRANSFORM

1. Definition

Given a sequence {xk}, k- - oo,... <x> , let

00

X(z) = ^xk-z~k, r<> < \z\ < Ro, (Eq. 2.3)
A=-oo

where we assume we can find values of r0 and for which the series converges.

As in the case of the Laplace transform, Eq. (2.3) is considered an operator that

transforms a sequence xk into a function X(z), symbolically represented by

X(z) = Z{xk}

The Xk and X(z) are said to form a z-transform pair denoted as

X(z) <-> Z{xk)

EXAMPLE 2.2 Consider the sequence given in example problem 2.1

P(s) = -^- => xk = eakT ; k=0,l,2,...
s + a

By Eq. (2.3) the z-transform of Xk is

Z{xk} = X(z) = ±e-"kTz-k =±(e-aT ■ z'1)
*=o k=0

Note: a infinite geometric sum is given by

„,=o l —a

Letting a = (e'aT -z_1)

l-(e-fl'7-z-)
X(z)=, ,_-a.T -K i Yar-z-'\<\ ■ \z\>e'

2. Some Properties of the z-Transform

Listed below are some properties of the z-transform useful to the material

presented in this section. For reference, a more complete list is found in [Ref. 1].

Linearity: given {xkj, {yk}

Z(xk+yk) = Z(x0+Z(yk)

Z[a(xk+y!i)]= Z(a x0 + Z(ay0 = aX(z) + a Y(z) ; where a = constant

Time Shifting:

Z{x(k±n)} = z-nX(z)

Gives transform pairs

x(k+l)+>zX(z)

x(k-l) <-> z1 X(z)

Demonstrated by

Z(xk+i) = Z (X0

00 00

Z(xk+1)= Xx*+r
z_* =Sx*+i-

z"
0 0

= ±xk+rz-^.z
0

= z-X(z)

■A-l+1

Final Value Theorem:

if such limits exists.

Limx(k) = Lim(z-\)X(z)

EXAMPLE 2.3: Find the z-transform given in example problem 2.1.

[yk = **

z*(z) = e- • X(z) + (1 - e-
a7') • U(z)\ Y(z) \-e~aT

Y(z) = X(z) U(z) z-e-aT

10

C. ANALYSIS OF DISCRETE-TIME SYSTEMS

1. The Discrete Transfer Function

Consider the continuous-time and discrete-time systems shown in Figure 2.4.

u(t) y(t)
—►

u(k) y(k)

Figure 2.4: System Transfer Functions

The transfer function for the continuous-time system is

Y(s) = {C(sl - A)~x -B + D}- U(S)

For the discrete-time system compute

\yk=C-xk+D-uk J

z(xk+1) = z(®-xk+r-u)

z-X(z) = 0-X(z) + T-U(z)

x(z) = (zi-®y]-r-u(z)

Z(yk) = Z(C-xk+D-uk)

Y(z) = C-X(z) + D-U(z)

Y(z) = {C■ (zl - <D)-' • T + D\ ■ U(z)

Discrete transfer function

U(z)
c(zi-®y'r+D (Eq.2.4)

EXAMPLE 2.4: Find the discrete transfer function from example problem 2.1

11

Given:

P(s) =
a

s + a

Continuous-Time

a

Discrete-Time

Y(s) = [C • (si - AT -B + D]- U(s) => Y(s) = -?— ■ U(s)
s + a

0> = e~aT T = \e-ai ■ (a)d£ = (1 -e~aT)

From Eq. (2.4)

Y(z)
= (l)[zI-e-a,r-(\-e-"1) = \-e-aT

a-T U(z) z-e

Now consider the sampled-data system in Figure 2.5.

D/A «fiV P(s) y(% A/D
yk

Let

Figure 2.5: Prototype Sampled-Data System

fl;* = 0
u(kT) = '

|0;£ * 0

Then u(k) is the unit impulse. The response to a unit impulse determines the impulse

response of the D/A converter:

u(t) = \(t)-\(t-T)

Then

1 e~xT 1
U(s) = ^e—^(l-e-«)

s s s

and

y(t)=u G(s)
•(l-e-))

V s

y(kT) = y(t), (k-\)T<t<kT

12

Finally,

G(z) = Z(y(kT))

rG(s)
= ZU"

V s
(j-«-)

-K ry\ T-\ (1-O-Z \L '<?(^

(l-z-)-Z

I V s J

rG(s)\

V s J

Where the "L'1" is dropped for convenience.

EXAMPLE 2.5: Compute the discrete transfer function for

a
G(s) =

s + a

Then

The corresponding time function

G(s) 1 1

s s s + a

r«-i(,)-«-(o

(Eq. 2.5)

y(kT) = l(kT)-e-ak7 -l(kT)

The z transform

1 s J ^V z-1 z-e-' (z-l)(z-e-aT)

From equation 2.5

G(z) = (l-z-') Kl z(l-e-°r)
,(z-l)(z-0

1-e -aT

z-e -aT

13

The transfer function can also be obtained from the system's response to a unit

pulse. Suppose the system input, uk for k > 0, and the initial conditions are known, then

writing out each term of the difference equation gives:

x, = O • x0 + T • u0

x2=<&-xl+r-ux =o-(o-x0+r-«0)+r-w1 =o2-x0 + o-r-w0+r-«1

xk =o* -x0 +a>*-1 -r-w0 +o*-2 -r-u, +...r-w,_,

Therefore,

1=0

A-i (Eq. 2.6)
^=c-Q*-x0+yc-P*-'-r-t/;

'=° A,(*-i)

Suppose xo = 0 and

then

In general,

u =rk=0

;=0

2. Block Diagrams and State-Space Descriptions

The discrete transfer function, in the z-domain, represents a linear algebraic

relationship, accordingly multiple linear systems may be described by a system of linear

equations.

14

Parallel Connections: The system response of a parallel combination of two LTI

systems is the sum of the single-path transfer function, Figure 2.6.

» H,(z)

Or2*
H2(2) 1

Figure 2. 6: Parallel blocks

7(z) = [#, (z) + #2 (z)] • l/(z) = //(z) • U(z)

W)

Cascade Connections: The system response of two LTI systems in series is related by

the product, Figure 2.7.

u
H,(z) H2(z) y

Figure 2.7: Cascade blocks

Yx(z)=Hx{z)-U{z)\
Y(z)=H2(z).Yl(z)\Y^H^H^-U^

Feedback Connections: The transfer function of a single loop, Figure 2.8, is given by:

■>0 ►! H,(z)
A"

y

H2(z)

Figure 2.8: Feedback transfer function

15

y = Hx-e
y = Hx-(u-H2-y)=>Y(z) =

Hx(z)
U(z) e = u-H2-y\ ' ' * ' " - --' \ + Hx(z)-H2(z)

These transfer function relationships can be used in combination to describe

complex multi-path systems.

In general

H(z) =

Example of 3rd order system

a0+ax •z~'+...am-z-m

1 + 6, -z~x +b2-z~2+...bn-z-
£(£)
b(z)

H(z) =
ax-z ' + a2-z~2 + a3-z

3

l + b,-z-] +b, -z-'+L-z-'

State-space realization (control canonical form), Figure 2.9.

Figure 2.9: State-Space Realization

By inspection

xl(k + \) = x2(k)

x2(k + l) = x3(k)

x3(k + l) = -bx-x3(k)-b2-x2(k)-b3-xx(k) + u

y = a1 -x3(k) + a2-x2(k) + a3-xx(k)

16

In vector-matrix form

x(k + i) = o-x(k)+r-u(k)

x = o =
0 1 0 0
0 0 1 r = 0

*3 ~b2 -&. l

y(k) = C-x(k)

C = [a3 a2 a,]

3. Input/Output Stability

Suppose \uk\ < M < oo, for all k > 0, then Pd is BIBO stable if in response to any

bounded input Uk, the output yk is also bounded: \yk \ < oo, for k >_0.

In general, for zero initial conditions, [x(0)=0]

CO

yk = IXC*-*)-«/
A=-oo

For BIBO stability

\yk t^Kik-iW
k=-°°

if

<Y\hd{k-i)-M\
k=-ao

^M-|;|Ärf(Ä:-i)|<oo

X|^(Ä:-O|<oo or S|ä(*)|<«>
-°° k=-oo

Therefore, if the unit pulse response is absolutely summable, then the system is BIBO

stable.

EXAMPLE 2.6: Determine the stability requirements for example problem 2.1.

Consider the unit pulse response

17

yk =hd{k) = ak k=0,1,2,3...oo

and

00 1

5V=-T7
*=o 1 - \a\

is BIBO stable if |a| < 1, and unstable otherwise.

D. SIGNAL ANALYSIS AND DYNAMIC RESPONSE

1. Signal Transforms

The unit pulse:

U(z)=fjuk-z-k=z°=\ ;
k=-x

The unit step:

U(z)=±uk.z-> = ±z-*=-±zr = -?-

"* =
fl,* = 0

f1;>t > 0
0;£<0

General sinusoid:

uk =r*-cos(Ä;ö)-l(Ä:) = r/ re/^+e-./*o
■i(*)

Z[rk -cos(k0)-l(k)] = z z —— +
z-re'e z-re~'e

U(z) = ^-r-cosfl)
z2-2r(cos0)z + r2

2. Frequency Response of DTS

Consider a sinusoid at frequency co0 applied to a continuous-time system

u(t) = A ■ cos(ö)0 • t)

The continuous-time response is

18

y{t) = A■ cos(o)0 -t + f)

Where the amplitude and phase are defined as

A = \G(jco0)\

<f> = ZG(jo)0)

For discrete-time systems

uk = cos(co0kT) ■ 1(0

The discrete transform

TT. . z(z-r-cosco0T) \ [z z]
U(z) = ^-± ° —T = --\ 7T7 + 7TT\ where r = 1; 0 = <T

z2 -2-r-cos(co0T)z + r2 2 {z-em>' z-e'*"' J °

The discrete response

Y(z) = G(z)-U(z)

_ I \ G(z)z G(z)z }
2 [z-eM'T z-e~M'T.

Expanding Y(z) and letting z -» ejwJ

{)~2[z-e^T z-e-'^]

Let G(eM'T) = A(co0T)-em6)»T)

1 f eJvz e~ivz 1
2 [z-e/<B"r z-e-J°°T\

The inverse transform

Yxs(kT) = A-cs(o)0Tk + y/)

3. The Discrete Fourier Transform (DFT)

Let the time function be periodic, i.e. f(kT)=f(kT+NT), then DFT offflcT) can be

defined as:

J2W| = ^f{kT). -j2x{nkT)l{NT)

19

where F(n) is a z-transform of the ffiT) over one period evaluated at the discrete

frequencies of a Fourier series z = eJmT, where a> = 2im/fsrr • Define F„ = F(2m/NT),

Then the DFT can be rewritten as

AM

F„=Yfk
rj27i{nk)IN

*=0

and the inverse transform is

N ,,=o

Now evaluating the frequency response using the DFT can be done as follows:

Let

u(kT) = A sin
V N ,

0),=
2jd_

N

Then

= A. V U27*« ~ n)lN _ e-J2nk(l+n)/N 1
V

= - NA

{V
;l = n

and the DFT of the output is

y(kT) = B-sin
2nlk

■ + y/

*=0 V N)

..JL. v/,-/> .J2*k(I-n)/N _-iw ,e-j2nk(l+n)IN
2jfrT-^
0;/ * n

= \NB jy, .
—eJT ;l = n

20

lid Therefore the transfer function for co, is defined by
' NT J

where 7/ = FFT(y0 and U, = FFT(uO, evaluated at n=l.

JcmiN_Y, _Be»
\) U, A

E. SAMPLED-DATA SYSTEMS ANALYSIS

For the purpose of studying the sampled-data systems, each operation involved

will be analyzed separately. First consider the ideal sampler shown in Figure 2.11. The

technique presented here is to use impulse modulation to form the mathematical

representation for the process of taking periodic samples from r(t) to produce a sequence

r(kT) and to analyze the sampled signal as a continuous signal using the Lapace

transform.

r(t) ^ r*(t)

Figure 2.10 : Ideal Sampler

The output of the sampler is a train of impulses

'*(')= Y,r{t)-S(t-kT)
k=-oo

Recall the following properties of the unit impulse

j/(0 • <>(t ~ a)dt = f(a) sifting property and
—oo

/

\ö{r)dr = 1(0
-co

Therefore

21

00

Lf*(0}= yO)-e-"dT
— 00

* oo

= \^Lr{r)ö{t-kT)-e-STdz
-00*=-"»

00 °°

= YJ \r(r)S(t-kT)-e-ST -dx
*=-«>.

= Yjr(kT)-e-xkT = R'(s)

where we used the sifting property of 8.

Now consider the hold operation, which takes the impulses produced by the

sampler and extrapolates the data into a piecewise constant output rh, as shown in Figure

2.12.

r(t) r*(t)
ZOH

Figure 2.11: Sample and Hold

Using zero-order polynomials, thus, the name zero-order hold (ZOH), which hold

each sample constant over the sampling period, the piecewise signal rh is defined as

rh = r(kT) ; kT<t<(k+l)T

The response of the ZOH to a impulse at time t=0 is 1 for 0 < / < T. The impulse

response of the ZOH is ZOH(t)=l(t)-l(t-T). Therefore,

ZOH{s) = J[l(/)-1(7-T)\e~sl ■ dt = (1~e *)

0 s

1. Spectrum of a Sampled Signal and Aliasing

Since r (t) is a periodic function it has a Fourier series representation:

A=-oo

22

where

7/2
C«=i j is(t-kT).e-'"^'r>'dt

■* —7"/ 21=—"»

~r
Therefore,

jr«y(r-^) = ify(2*,/7'>'
A=-00 * «=-00

Let o, = — , be the sampling frequency and take the Laplace transform of the sampler

output:

L{r\t))= J Yr(t)-S(t-kT) e~sldt
-oo\n=-«>

-00 1-* »=-00 J

^^■e >"*>'■ e-«dt
T H=-co _„

Let s =ja)

1 °°
~ Y,R(<s-Jncos)

i °°
R\jo)) = -YJ

RUa>-jno)s)
■*- M=—on

Notice, that sampling produces an infinite train of sidebands at ncos, n = -oo... oo.

EXAMPLE 2.7: Let ö>5 = 1, m = 1/8

Ä*0-l/8) = ... + JRO-ö)1) + Ä[y(ffl1-ö)J] + JRL/(ö2,-ö)JI)] + ...

= ... + i?01/8) + i?[;(-7/8)] + i?[y(-14/8)] + ...

If R(jco) has components above the Nyquist frequency cos/2 or nIT, then after sampling

overlap or aliasing will occur and the original signal can not be reconstructed. This leads

23

to the sampling theorem: the original signal can be recovered from its samples if the

sampling frequency (cos = 27i/T) is at least twice the highest frequency in the signal. To

avoid aliasing a low-pass anti-alias filter is usually inserted preceding the sampling

operation.

2. Data Extrapolation

To recover RQco) pass R* through a low-pass filter L(jco) as shown in Figure

2.12.

R0a>)=L(ja))R(jco)

it (O

T

Figure 2.12: Ideal Lowpass Filter

Then

/(/) = — [T-eialdco
OTT J In -nIT

2njt
(e >(*"''"> _e-'<*'/7">\

l . m
-sin —

MIT T

sine —

Therefore,

r(t)= jr*(T)-!(t-T)-dT

24

. 7t(t - Z)
J £ r (r) • S(T - kT) ■ sine H T) dr

_ooi=-oo T

Ä rirT. . 7C(t-kT)
= 2_, r(kT)smc— -

Note, the ideal extrapolator is noncausal, since l(t) is nonzero for t < 0. Suppose Z(/vt^ is

replaced by ZOH.

Recall,

l-e-Jar

ZOH(ja>) =
j®

Expressing the transfer function in magnitude and phase form

ZOH (ju)) = T-e-,eoJ,z sine
V ^ J

Therefore,

\ZOH(jco)\ = T sinc-
coT

ZZOH(jco) = -^ +180 • ö(ü) - n2n)

The resulting signal contains unwanted harmonics or impostors. By frequency analysis

oir(t) the principal harmonic can be identified.

Consider the sinusoid signal v(t) = ej0>"'+M

V(jco)=)eU^t+J^).e-Joytdt

—oo

00

This integral is not defined, however notice Z(S(t)) = \e~'m ■ S(t) -dt = \,

S(t) = — \eia,dco.
In

25

Now replace t with co to get

S(co) = — \eia"dt

Therefore,

-CO

= 2m '*8(co-co0)

Since 8 is a even function, the spectrum of r(t) can be written in terms of impulse

functions

To recover the signal Rh , multiply the spectrum of R* by the transfer function of the

ZOH.

F. DISCRETE EQUIVALENTS BY NUMERICAL INTEGRATION

Concept: Represent a given continuous transfer function H(s) as a differential

equation and derive a difference equation whose solution is an approximation to that of

the differential equation.

1. Numerical Integration

When considering discrete approximation to integration, as shown in Figure 2.13,

three alternatives exist.

Forward Backward Trapeziod

U(t) V2
/

i
k-l k k-\ k k-\ k

Figure 2.13: Area Approximation Rules

26

Approximation methods:

Forward:

zK+i =xk+T-(uk)}

zX(z) = X(z) + T-U(z)\ X(z) T 1 — H(z) =
X(z)(z-l) = T-U(z) J U(z) z-\

s is replaced by ->

Backward:

zixk =xk.i+T-uk]

-Iw^.-r rr,_^ rrs.s X{z) T X(z) = z"X(z) + T ■ U(z) => H(z) =

s is replaced by ->

U(z) (1-z-1)

2-1

Tz

Trapezoid Rule (Tustin's Method):

T zixk=xkA+--(uk-uk_l)}

(l-z-1).X(z) = ^(l-z-').f/(z)^//(z) = ^^ = ^.i±^ = ^.£±l
2V W U(z) 2 1-z-' 2 z-1

5 is replaced by -»
Jz + 1

Therefore, given a continuous transfer function H(s) a discrete equivalent can be

found by the substitution:

H,(z) = H(S)\s__ :(2/7-)[(2-I)/(Z + l)]

27

2. Zero-Pole Mapping Equivalents

This technique consists of a set of rules for locating the zeros and poles and

setting the gain of a z-transform that will describe a discrete, equivalent transfer function

that approximates the given H(s).

Rule #1: All poles of H(s) are mapped by z = esT. Replace s with esT for the poles of

H(s). HH(s) has a pole at s = a, then H(z) has a pole at z = eaT. If H(s) has a complex

pole at s = -a +jb, then H(z) has a pole at z = re±je.

Rule #2: All finite zeros are mapped by z = esT.

Rule #3: All infinite zeros of H(s) are mapped by z = -1.

a) Only one zero of H(s) at s - oo is mapped into z = oo.

Rule #4: The gain of the digital filter is selected to match the gain of H(s) at the band

center.

3. Zero-Order Hold Equivalent

If the approximating hold is the ZOH, then the equivalent to H(s) is

//(z) = (l-z-')ZpM}
This is the same relationship that was derived earlier in section C of this chapter.

28

III. INTRODUCTION TO RAPID PROTOTYPING

The primary tool for the research conducted in the Avionics lab is the

hardware/software interface provided by the MATRIXX product family developed by

Integrated Systems Inc. (ISI). The MATRIXX product family is shown in Figure 3.1.

This software provides a complete workbench for control systems design and

implementation. The RealSim controller automates the development of the real-time

systems by combining graphical modeling software with real-time control hardware. The

key feature of this product is the AutoCode tool which will automatically program

higher-language code such as C or ADA for the designed controller. The software

consists of an easy to use graphical user interface (GUI) that can be run on either SUN

workstations or a PC. The interface interacts with a high-speed digital signal processing

(DSP) board developed by Texas Instruments. The system is called AC-100 Model C30.

MATRIXX Product Family Functionality

Xmath ■*

Analysis/Design w

i '

L SystemBuild Simulation 1
* r

AutoCode ^
Code Generation w

^ '
Hardware

In-the-Loop
Testing 1

RealSim Series •

Figure 3.1: MATRIX, Product Family

29

A. RAPID PROTOTYPING SYSTEM ARCHITECTURE

The rapid prototyping system architecture consists of a UNIX workstation and a

windows based PC host computer which is equipped with two ISA bus adapter boards

(Figure 3.2). The workstation and PC are connected through Ethernet, using the standard

TCP/IP protocol suite. The two hardware boards in the PC consist of a board which acts

as the motherboard for the C30 DSP, and a "DSPFLEX" carrier board which holds four

input/output, or "IP", modules. The I/O boards connect the model to the real hardware

via the Hardware Connection Editor (HCE), which will be discussed in later sections. The

complete system is referred to as the AC-100 Model C30 real-time controller.

The avionics lab currently has two PC's configured as described above: a Pentium

tower PC called America and a luggable PC called AC 100. The luggable PC is normally

Workstation
RealSim User Interface and Data Collection

1 r

Host Computer
DSP C30 Processor

Generate AutoCode C
I/O Management

IP 1

Hardware

IP 2

IP 3

IP 4

Figure 3. 2 : RealSim Architecture

30

connected to a stand alone Sparc II workstation, used for field fight testing with the

school's Unmanned Air Vehicle (UAV) called FROG.

There are a number of different types of I/O cards available depending on the

application. Currently both PC's have 4 IP modules consisting of a serial communication

(IPSerial) module, digital-to-analog (IP_DAC) module, analog-to-digital (IP_HiADC)

module, and a pulse width modulation (IP68332) module. A description of each IP

module and procedures for connecting hardware to the model is covered in detail in the

Hardware-In-The-Loop Testing section of this thesis.

B. XMATH/SYSTEMBUILD

Xmath/SystemBuild is a software program similar to the Matlab/Simulink

software programs. Xmath is the parent process and will launch the SystemBuild editor

when the build command is given or when a file is loaded that contains SystemBuild

data. It was designed to include an extensive set of design and analysis functions for both

the classical input/output control techniques and the modern state-space control

techniques. The SystemBuild program uses a hierarchical method of organization, based

on the SuperBlock concept. SuperBlocks provide a way of organizing a group of blocks

that define a function into a compact form for display. Through the use of this hierarchy,

variable names can be passed up and down the hierarchical structure allowing the

engineer to easily track and understand what variables are and where they interact with

the model. This section will cover the basic functions of Xmath/SystemBuild, for

detailed information refer to [Ref. 4].

1. Xmath Basics

Xmath can be run from either the SUN or SGI workstations located in the

avionics and aeronautics labs. Prior to using the MATRIXX software, the user must

configure his UNIX account to source the 'aclOOsetup' file which defines the editor used

by the system. This command should be set up as a marcro in the user's .cshrc file so it

31

will automatically run each time the user logs on to the workstation. Adding the

following command line to the .cshrc file: 'source$ISI/AC100/bin/acl00setup.sh', will

accomplish this.

Before invoking Xmath, a separate directory for each project should be created to

avoid using project files from one project with the standard files of another project.

Therefore, start by first creating a project directory and then move to that new directory

using the following UNIX commands: mkdir projectname, cd project_name. To start

Xmath type « xmath » in the console window. This will bring up the Xmath

command window as shown in Figure 3.3.

This is the
X Windows
default menu.

This is the
menu bar.

Results appear
in the Log Area.

V

Type input here.

Errors, warnings,
and messages
appear in the

Xmath Commands: matt m
File Edit Vie» gptirns ■utdsn »tip

Menu Bar Scroll Bars f

Log Area

Command Area

Message Area

Grip
7\

0

Figure 3.3: Xmath Command Window

32

2. SystemBuild Modeling

This section is a tutorial that covers the basics of the SystemBuild editor and

simulator. In the following example, the user will build a block diagram and simulate its

operation. The model for this illustration is a simple SpeedController shown below in

Figure 3.4.

T*©

Figure 3.4: Speed_Controller

Step 1: Defining the SuperBlock

To invoke SystemBuild, at the Xmath command line type « build » and press

return. The SystemBuild menu bar will appear across the top of the display. Select

Build from the menu bar with the left mouse button. Then select Edit SuperBlock from

the Build menu. The Edit SuperBlock dialog box will appear and initially the menu in

the box is empty. Click the left mouse button on Edit New SuperBlock, and the

SuperBlock Attributes dialog box appears. Using the SuperBlock Name field, name the

SuperBlock. Under Type, select Continuous and click DONE.

Step 2: Placing the Blocks

A new SystemBuild editor window should be displayed, ready for building the

block diagram. To select from the SystemBuild block library, click on Define Block

from the Edit menu or, using a shortcut, double-click in the empty window to bring up

the SystemBuild block menu. The SystemBuild blocks are grouped together in thirteen

33

palettes. To select a palette, click on one of the three-letter combinations at the top of the

menu.

To begin building the Speed_Controller, first select the Gain Block from the

algebraic block palette (ALG). Click and hold the left mouse button on this block, drag it

into the screen, and release the mouse button when the Gain block dialog box appears,

name the block, if desired, and click DONE. Next, select the Summer block from the

AGL palette and the Inegrator block from the DYN palette using the same procedures.

Step 3: Connecting the Blocks

The next step is to connect the blocks. Note the middle mouse button will be used

to make connections. Start by connecting the Summer block with the Integrator block.

Click in the Summer block, with the middle mouse button, then click on the Integrator

block. A line should connect the two blocks. Using the same procedure, connect the

Integrator to the Gain block. Now, connect the Gain block to the Summer block. Since

there is more than one input to the Summer, the Connection Editor will appear as shown

in Figure 3.5. Use the connection editor to specify the connections; the inputs to a block

flail ■CONNECTION EDITOR! ■Bffl

FrcM,To :

c.3

f0

TO.4

Cancel B3 Del Done

Figure 3.5: Connection Editor

34

are in numerical order from top to bottom. The output from the Gain block should go to

the second input of the Summer. Then with the left mouse button' connect to Gain block

with the number 2 Summer input, highlight Add and click Done.

Note that the blocks can be resized by clicking on the block id number and

moving the mouse, or flipped by double-clicking on the block's body.

Step 4: Connecting External Inputs and Outputs

Input connections: click the middle mouse button in the open space, then in the

Summer block. The connection editor dialog box appears. With the left mouse button,

click the number 1 port of the Summer block then click Done. To label the external

input, click and hold the left mouse button in the SuperBlock ID bar, just above the

SystemBuild window. Select SuperBlock Attributes. In the dialog box, select the Labels

tab and under Input Naming select Enter Local Label Names. Now select the Input

tab and beside Input Label type the desired name. Click Done.

Output connections: With the middle mouse button click in the integrator block,

then click in an open space. Connect the two boxes, then click Done.

Simulating the Model

The SpeedControl model can now be simulated. There are a number of different

methods to simulate model, two of which are described here;

Method 1: First define a time-vector in Xmath by specifing a name, range, and

an increment. In the Xmath command window type: « t=[0 : .1 : 20]' »;. Next,

specify an input vector of magnitude one: « u=ones(t) »;. Enter the simulation

command. Type: «y=sim("Name of SuperBlock", t, u) »;. Note in this example the

name of the SuperBlock is Speed Contt-oiler. This command invokes the simulator,

specifies that the Speed_Controller model SuperBlock is to be processed, and sets the

output equal to y. After the simulation is complete, plot the output by typing: <<plot(y)

». Note, more details on using the sim command are available by typing « help sim »

in the Xmath command window.

35

Method 2: From the menu bar under analysis select Simulation. This will bring

up the simulation parameter dialog box. Define a time vector and input vector as above

and run.

Analyzing the Model

The Xmath/SystemBuild software contains an extensive set of functions for

system analysis. Specifics for analyzing the model can be found in the Xmath and

SystemBuild Core Manuals located in the avionics lab or by using the help command.

To linearize the model, the Xmath command is « sys=lin(" SuperBlock

name", {keywords}) », where sys is the name of the Xmath system object in state-space

form. Other useful commands include: poles (sys), eig(a),bode (sys).

Saving the Model

To save the model select File from the menu bar, highlight the SuperBlock name

and click on Save.

C. REALSIM SERIES RAPID PROTOTYPING

This section will continue with the design of the speed controller presented in the

last section. The tutorial will demonstrate the basic procedures for using the GUI and

testing on a real-time controller. Later sections will describe how the hardware is

connected to the model and the procedures for hardware-in-the-loop testing.

1. RealSim Graphical User Interface (GUI)

Each RealSim project is placed in a unique RealSim project directory. A number

of standard files are associated with each RealSim project. Therefore it is recommended

to create a separate project directory for each project. The project name and the directory

name should be the same.

36

To invoke the RealSim GUI type « realsim » in the UNIX command window.

When the RealSim GUI is invoked in a new directory a dialog box will appear along with

the GUI. Pressing return or clicking yes in the dialog box will enable the makeproject

command which creates the first of the required standard files called animation

configuration file (animation.cfg). Once all the default settings have been accepted, the

project name in the bottom left-hand corner of the GUI should be listed.

Next the user must create a target configuration file (target_config.cfg) file. This

file contains information such as the settings that the AutoCode needs to generate the

appropriate C code, which controller the model is to run, how many processors are in the

controller. This file will be used later to compile, link, download and run the design. To

create this file, click on show utilities in the GUI and select Retarget. The target is the

node name of the controller. In the UNIX command window the user will be asked for

the 'controller host name[]:' which in the avionics lab is 'america.' All of the remaining

default settings should be accepted. After retargeting the system to 'americcC the GUI

should indicate this in the middle of the bottom line in the GUI, see Figure 3.6.

These files are only created once for each project, as long as there are no changes

to the system configuration. Once these standard files have been set up for a specific

project, and the user is in the project directory for that project, typing « realsim » in

the UNIX command window will start the GUI targeted accordingly.

Through the use of the GUI the designer can now follow the flow diagram that

steps the user through the design process. As the user performs each step of the process,

the GUI paths are filled in, indicating the current stage in the design process. If certain

RealSim files are older than their logical predecessors, the Needs Up dating indicator will

be displayed.

2. Building the Model

The first step in the process is building the model using Xmath/SystemBuild, as

described in the previous section. To continue with the speed controller model, click on

the Xmath/SystemBuild block in the GUI. This will bring up the Xmath command

37

window. From this window, select file and load from the menu bar. Highlight the file

name and click OK. Select the SuperBlock from the build menu to display the model of

the Speed_Controller.

ra KCIISIM GUI S

■: Needs Updating
XaAtli/

Sjatu tuild
IMl

Utilities

Makeeroiect

Rewre«
Convert D A Data

^^^^ Data AM. Editor

lAOtent

<Mit«C>da

■
Animtioit View Autocode

VjewComecÖons

EdittareetconfiR

I 1 Spa^on

8Ä3Debug«er

tHpUl
art

m link

lurduKr*
Csnaectien

B Miter

Ecutaiimation.dE
HideUoh&ei

iHDlMt
ud
Ha

bit

|

The Project is The Target is Al is the target
the name of the the node name of configuration of
project you are the controller. application
currently running. processor # 1.

Figure 3.6: RealSim Graphical User Interface

The SuperBlock design, for this example, is presently a continuous type and needs

to be transformed to a discrete controller (z-domain). Selecting Transform SuperBlock

under Build from the menu bar will display the transform dialog box. Highlight the

SuperBlock name and under type select Discrete, then click Transform. When

transforming from continuous-time to discrete-time a time delay block must be added to

the block diagram, as shown in Figure 3.7. From the DYN palette select the time delay

block.

38

Q>-r©

Iime_^slay Controller

TCD

Figure 3.7 : Discrete SuperBlock for Speed Controller

3. AutoCode

Once the SuperBlock is complete, the user must generate real-time code. In

SystemBuild, select Generate Real-Time Code from the Build pull-down menu. When

the dialog box appears, highlight the SuperBlock for which you want to generate code.

Beside the generated code language, select RTF_only, and check that the filename is the

same as the project name, then click DONE. This produces a file with the model name

followed by a .rtf extension. This file containing the real-time code is a top level

input/output code that is used by the AutoCode program to produce a higher-level

language used to conduct hardware-in-the-loop testing.

After the user has generated a real-time file from the SystemBuild model,

invoke the AutoCode by clicking the AutoCode button in the RealSim GUI. The

AutoCode high-level language code generator reads the real-time (or .rtf) file and

produces a high-level source code file with the extension of .c. This file will be used to

compile, link, and run the design. The GUI should now indicate the completion of the

AutoCode process.

39

4. Interactive Animation

The next step is to build the Interactive Animation (IA) picture display for

monitoring and controlling the model while it is being executed in the workstation

simulation environment or during hardware-in-the-loop testing. Invoke the editor by

clicking on the Interactive Animation Builder button in the GUI. The animation diagram

is made by selecting icons from a given library of gauges, dials, switches, and other

various input and output devices. The Interactive Animation section of the AC 100 User's

Guide [Ref. 4] has details on all of the available icons. Selecting DEFINE from the IA

control panel will display the library of icons. For the SpeedController example select

the dial for the input and a digital readout for the output as shown in Figure 3.8. The

RTF NAMES button in the control panel loads the I/O names from the model .rtf file and

must be loaded prior to making any connections. Using the IA Connection editor,

similar to the SystemBuild editor, the appropriate inputs and outputs are connected to the

appropriate devices. Once the picture is complete select SAVE PICT from the control

panel and a file with a .pic extension is created in the working directory.

Speed_Controller

Ve locity_lnpufc Velocity_Ouput

Figure 3.8: IA SpeedController

40

5. Hardware Connection Editor (HCE)

The Hardware Connection Editor is used to make connections from the external

I/O in the SystemBuild model to either external hardware I/O devices for hardware-in-

the-loop testing or to the IA module for simulation. Before invoking the HCE, the user

should have a copy of the file 'c_c30.hce' in the project directory. This file informs the

HCE what type of external I/O devices the target computer, America, is equipped with.

This process will be covered in greater detail, along with the current set-up in the avionics

lab, in the Hardware-In-The-Loop Testing section of this thesis.

Two connection editors will appear when starting the HCE. The first screen is for

the SuperBlock external inputs and the second for external outputs (see Figure 3.9). For

this example, the input device will be 'MONITORJNPUT' type. No changes should be

required to the editors and the only action by the user should be to click DONE to both

pages.

Elevator
display

Elevator
buttons

User
input
fields

IMCUOH Bator tHCEiH

uae left mouse button, tab. shift-tab» or return to »elect items.
Hlnte Use middle mouse button on toggle items for pull—doun menu'e.

chan labeltl:10) tupe
BELOKBBBBI
nod Che initial—value f inal-value

1 auto-speed
2 Throttle
3 CruiseOn
4 SetSpeed
5 Dec-Speed
6 Xne_Speed
7 SpeedError
6 DeelredSp
9 Nolsuspeed
10 engine-RPM
11 Dear-Ratio
12 Tims

NO-DEVICE
NO-DEVICE
NO-DEVICE
NO-DEVICE
NO-DEVICE
NO-DEVICE
NO-DEVICE
NO-DEVICE
NO-DEVICE
NO-OEVICE
NO-DEVICE
NO-OEVICE

<r

m

O
Device-Type

NO-OEVICE

Mitial-Ualue
Ifinlnuej-Ualue.........
Offset
BbOutputTsUssrHoake...

Itodule
o

connscted

Chaanel-Mwafeer
0

Final-Value
ntucitem-Ualue
Scale-Factor........

CANCEL groupie« elOMino-ettrlbutee
by-SB.ehannel initial-and-flnal_valuoa

Selection—Mode
single

Modifier
fields

Command
" buttons '

Figure 3.9: HCE

41

6. Compile and Link

Once the AutoCode is complete the C source files need to be compiled and linked

to the C30. Selecting the Compile and Link button in the RealSim GUI will cause the

UNIX systems to connect via ftp with the AC 100 target computer (America). For this to

happen the host computer, America, must be in the ftp mode. Typing 'aclOOsvr' at the

DOS prompt on America will enable the computer for ftp transfer. The compiler

generates object code from the .c file and the link creates a C30 DSP executable from the

object code.

7. Download and Run

When all the above steps are completed, the model is ready to be tested. The

testing for this illustration will be a simulation only, since no hardware is connected.

Selecting Download and Run on the GUI will connect the RealSim software to the target

AC 100 computer through ftp. Once the connection is made, it will automatically load the

C30 executable into the C30 memory and prepare it to run. The IA module will appear

on the workstation window along with a control panel called IA Client, see Figure 3.10.

The START CONTROLLER button starts the execution of the model using the

initial values loaded from the project name, ioc file for the external inputs, and outputs

defined by the SystemBuild model. The STOP CONTROLLER button stops the

executing application and holds the external inputs and outputs at their final values. The

RESTART CONTOLLER button restarts the model, again using the initial values that

were loaded from the project name.ioc file.

The HARDWARE RESET button causes the RealSim controller to perform a

hardware reset and causes the IA Client to exit. This is the best way to exit after a run, as

it will clear the C30 memory and return the AC 100 computer to a ready status. The third

button, EXIT GRAPHICS, exits the IA Client without rebooting the controller. This is a

software reboot only, which stops the model and terminates the ftp connection. This

button is not recommended for use, as it will not stop the model from running on C30.

42

a Sldac6 lacllent Control Window

Currant Frequency Scöe Factor »1.000000 HJ

SCALE
FREIIUEKCr

START
CONTROLLER

HARDWARE
RESET

<CAUTIOH>
EXIT

BRHPHICS

START
OATA

ACQUISITION

StT
DATA

PARrlS

J
Figure 3.10: IA Client

8. Data Acquisition Editor

The RealSim data acquisition editor defines one or more data acquisition sets for

each project and provides real-time data acquisition. This allows the user to record and

analyze any of the inputs or outputs associated with the project. To invoke the data

acquisition editor select 'Data Acq. Editor' from the show utilities button in the GUI.

The first data acquisition screen to appear contains all the inputs to the system. The user

selects the desire inputs for recording by highlighting the variable and selecting 'ON'

next to the DA_Setting modifier field at the bottom left of the screen. The

'DA_Decimation_Factor' should read T, this ensures the value will be recorded every

time step. To select the outputs for recording, toggle the 'Display' selector at the bottom

of the screen from the 'SB_INPUTS' to 'SB_OUTPUTS'.

The START DATA ACQUISITION button starts/stops the data acquisition

program which will record any or all of the inputs and outputs to the C30. Starting the

data acquisition creates a file in the project directory with the project name and '_l.raw'

extension. Each time the acquisition process is started a new file is created and the

number will increment up corresponding to the number of data files created. Therefore it

is good practice to note which data files correspond to which runs when testing.

To retrieve the data after the exiting the controller, the user selects 'Convert DA

Data' from the show utilities button in the GUI. The workstation command window will

show the last data file recorded with a '.dat' file extension. The user can accept the file

listed in the window by pressing return or select a previous file by changing the number

43

of the file. This process creates a file with the same name as the corresponding raw file

that can now be loaded directly into Xmath for analysis. The variable names will be the

same as those used as the input or output names in the SystemBuild model. These

variables will be vectors with lengths depending on the amount of time that data was

recorded. A reference file is also created when converting the data that contains specific

information on that data file, such as the amount of time recorded or the number of

elements in the file. This will help identify data files if numerous runs are made during

testing.

44

IV. HARDWARE-IN-THE-LOOP (HITL)

This section outlines the process of connecting hardware to a digital controller.

By using the standard input/output devices integrated with the RealSim software, the

SystemBuild diagram is connected to the desired hardware. A critical part of connecting

hardware to the controller is the calibration of the sensors. The controller uses an

algebraic conversion of the measured sensor output signal from the hardware. This

algebraic conversion requires calibration by determining the correct conversion constants.

To demonstrate this step of the design process in the avionics lab, a device called

the Airborne Remotely Operated Device, AROD, will be used. The lab currently has two

AROD devices which the students will use for calibration and HITL testing. A complete

description of the AROD is given in [Ref. 5].

A. HARDWARE DESCRIPTION FOR AROD

The control surfaces of the AROD are actuated by Futaba FP S34 servo motors.

To control these actuators, a Pulse Width Modulation (PWM) input signal is used. The

width of the pulse determines how far the servo will turn. The internal control circuit of

the Futaba motor includes a small potentiometer in a feedback loop to sense the servo

position. The output signal from this sensor is noisy due to the varying current draw

during motor operation. Therefore, the actuators installed on the AROD in the lab have

been modified to reduce sensor noise. An additional wire has been added so that the

positive voltage on the potentiometer could be measured at the same time as the center

voltage [Ref. 5]. Taking the difference between the measured high voltage VH and the

centered voltage Vc , give a delta voltage VD and results in a significant reduction in

sensor noise. This set up is shown in Figure 4.1.

45

PWM
Actuator

Analog Signal
 ►

o
r

pwM; i v„
Servo —► Sensor

L 1 *V- f
: ■*

i
: vc

vr

Figure 4.1: Futaba Actuator

B. CONVERSION SUPERBLOCKS

For this design, the controller input commands are given in degrees. Since the

input signal to the actuators operates on PWM, a conversion from degrees to PWM must

first be implemented. Similarly, the output signal from the sensors must be converted

from volts to degrees. Figure 4.2 shows the SuperBlocks that will be developed to

implement this design.

Degcmd
Deg_2_PWM Actuator Volts_2_Deg

Degsensed

Figure 4.2: Conversion SuperBlocks

1. Converting Degrees to PWM

Previous testing of the actuators has determined the total throw to be 0 to 200

degrees, with a pulse width of 0.6 milli-seconds corresponding to the minimum

deflection, 2.4 milli-seconds corresponding to the "maximum deflection, and a pulse-

width of 1.5 milli-seconds corresponds to the centered position, [Ref. 5].

46

The refresh frequency for the AROD HITL test was chosen to equal the controller

frequency of 25 Hertz, giving a period T of 40 milli-seconds. Figure 4.3 depicts the

relevant quantities for a PWM signal.

+5V.

h*pH

Figure 4.3: PWM

Duty cycle is calculated as:

Duty Cycle = -£-

A minimum pulse width of 0.6 milli-seconds, corresponding to -100 degrees, results in a

duty cycle of:

Min. Duty Cycle (-100 deg.) = — = 0.015

The maximum pulse width of 2.4 milli-seconds, corresponding to +100 degrees, results in

a duty cycle of:

2.4
Max. Duty Cycle (+100 deg.) = — = 0.06

Assuming a linear relationship from minimum to maximum values, the following

function is used to determine the required duty cycle for a given input in degrees.

Duty Cycle = 0.0002 * (Desired deflection in degrees) + 0.03 75 (Eq. 4.1)

The algebraic block iDeg_2_PWM' shown in Figure 4.4 implements this equation.

47

Deg_2_PWM

Q^Deg.

Figure 4.4: Deg_2_PWM SuperBlock

2. Converting Volts to Degrees

The output signal from sensors on the AROD, as described above, is the

difference between the measured high voltage VH and the centered voltage Vc. This

voltage signal must be converted to the correct vane position in degrees for feedback to

the RealSim controller and user display. Again it is assumed that there is a linear

relationship from minimum to maximum deflection as shown in Figure 4.5.

VmlOO VpiOO

Volts

Figure 4.5: Volts to Degrees Conversion

Therefore the measured output voltage from the sensor can be converted into correct vane

position in degrees by:

48

Degout ■■
200

V -V v pi 00 y ml 00

(VD-V0) (Eq. 4.2)

The algebraic block ' Volts 2 Deg' shown in Figure 4.6 implements this equation.

Volts_2_Deg

Figure 4.6: Volts_2_Deg SuperBlock

C. SENSOR CALIBRATION

Before the sensors can be used reliably by the controller, they must be calibrated.

Due to small changes in the operating voltages, calibration is required each time the

controller is started. The calibration process illustrated here for the AROD involves

measuring the sensed voltages for vane positions of maximum deflection (-100 deg),

minimum deflection (+100 deg), and the centered position (0 deg.). These measured

voltage values are then used in Equation 4.2 to obtain the correct vane position.

Referring to the Calibration IA screen shown in Figure 4.7, the calibration procedures

are:

• Command zero degrees of deflection using the 'Degcmd' dial. Input the

displayed voltage into the window labeled 'V0\

• Repeat step 1 for max. (+100 deg.) deflection and min. (-100) deflection.

• Confirm that the degrees sensed are the same as the commanded degrees.

49

Calibration

Degrees and

0.00

aeq...cnai

vo
0.00

VplOO
0.00

VmlOO
0.00

Til Mi

aiflfij

3ttlMM>

Voltage (Vd) Degrees Sensed

fg>*L 14,oo m*™-«™*«« i4.oo

Duty Cycle .duty..cycle.. 14.00

Figure 4.7: Calibration IA Screen

D. INPUT/OUTPUT CONNECTIONS

The I/O configuration for AC100 and America are given in Table I. The module

numbers given in Table II are entered by the user to the hardware connection editor to

define the type of I/O device required.

Table I: I/O Configuration

Module America AC100

IP_Serial 3 1&3

IP_HiADC 1 -

IP_DAC 2 2

IP_68322 4 4

50

As an example, the HITL design project requires an IP_68322 I/O module for the

PWM connection from the C30 to the AROD. The voltage signal from the AROD to the

C30 uses the IPHiADC module. Appendix A includes the HCE input and output

screens for this project.

A brief description is given below for the I/O modules used in the avionics lab.

References are also provided which contain more specific details on each module and

procedures for making the required connections.

1. Serial Connections/ IP_Serial Module

The IPSerial module provides two channels of high performance multi-mode

serial communication, [Ref. 6] section 5 page 69. Both RS-232-C and RS-422 are fully

supported. The module can be programmed to baud rates of 2 Mbit/sec and

asynchronous or synchronous protocols.

2. Analog-to-Digital Connections/IPHiADC

The HiADC provides 16 input analog channels with 12-bit resolution and

synchronous sampling of all inputs, [Ref. 6] section 5 page 61. The module can convert

one analog channel in 1.2 jusec or approximately 800 K samples/second. Each channel

has a fixed voltage range of + 5 V. No anti-aliasing filtering is provided for by the

module so inputs should be band-limited to V2 the sampling frequency of the system.

3. Digital-to-Analog Connections/IPDAC

The DAC module provides six channels of 12-bit digital-to-analog conversion.

Each channel can be configured to either + 5V or 0-10V output ranges, [Ref. 6] section 5

page 34.

51

4. Pulse Width Modulation Connections/IP_68332

The IP68332 module is a time processing unit (TPU) that can perform one or

more hardware I/O functions, [Ref. 6] section 5 page 52. It can be programmed to

generate various digital I/O signals, the current set-up in the avionics lab will use Pulse

Width Modulation (PWM) signals. In the PWM mode, the user specifies the duty cycle

as the output from the SystemBuild diagram.

52

V. DIGITAL CONTROL DESIGN

The RealSim rapid prototyping series allows for control system to be tested in

real-time with hardware-in-the-loop while recording any or all the state variables to

verify performance. This section will step through the design process using a simple

controller to control the control surfaces of the FROG.

A. MODELING ACTUATORS AND SENSORS

Before the controller can be designed, a mathematical model of the plant which is

to be controlled must first be created. The techniques involved to develop the model

depend on the characteristics of the plant. This section details the technique used to

model the actuators used on the FROG. Since both the FROG and AROD's control

surfaces are actuated by Futaba FP S34 servo motors, the AROD is used in the lab.

To develop an accurate representation of the Futaba actuators, the system is

modeled as a second-order transfer function.

H(s) ~ a"
s + 2 ■ C, ■ con • s + <on

The system response is obtained by applying a step function to the actuators and

recording the response using the data acquisition editor feature of the RealSim software.

To calculate the transfer function, the rise time tr and maximum overshot Mp values are

measured from the system response. From these values the natural frequency (on and the

damping ratio C, are calculated using the following formulae:

ln(MD)
C= , ; 2 (Eq.5.1)

53

-tan '^c
s

<°n =
Vw1 (Eq. 5.2)

It is assumed the actuators have a rate-limiter therefore a small step response of

10 degrees is used so the effect of the rate-limiter on the rise time would be minimized.

Then a larger step of 100 degrees is given to estimate the rate limits of the actuator. The

results are plotted and shown in Figure 5.1 and 5.2. Note, to obtain a clearer picture of the

actuators step response for the 10 degree step, the signal was fed through a lowpass filter

with a cut-off frequency of 10 hertz.

From the 10 degree step response plot, values for the maximum overshoot Mp

and rise time tr were measured as:

Mp = .2 tr=.06,

From equations 5.1 and 5.2, the co„ and C, were calculated as:

con= 20.55 £= .455,

a.
03 c

Time (sec)

Figure 5.1: Step Response of Futaba Actuator (10 deg.)

54

s

,111!

■

•
•

- •

■ :

■

Time (sec)

Figure 5.2: Step Response of Futaba Actuator (100 deg.)

The slope of the 100 degree step response is measured and used to calculate the

rate-limiter, which was found to be approximately +325 deg./sec.

The 2n order transfer function can be given in general form by:

-2

H(s) =
axs + a2s

where

a, =0

a2 = o)„

bx=2-£-cön

b2 = a,,

This transfer function was then implemented in SystemBuild, see Figure 5.3. Computer

simulations were run on the model and the step response recorded and plotted along side

the actuator's step response for analysis. By changing the damping ratio and natural

55

frequency of the transfer function, the step response of the model was made to match the

response of the actuator. The final values for the damping ratio and the natural frequency

were:

^=.55
con = 25

The step responses of the final second-order model and the actuator are shown in

Figure 5.4.

o- * — -rd>

Figure 5.3: Second Order Actuator Model

Figure 5.4: Step Response of Actuator and Second-Order Model

56

B. FEEDBACK CONTROLLER DESIGN

The next step is to design a feedback controller that satisfies specific

requirements. The requirements are normally specified in terms of response time,

overshoot, stability and robustness. The controller design process is outlined below:

•

•

Create a nonlinear model. A block diagram is formed that includes the plant

model and nonlinear controller.

Linearize the model and adjust controller gains. The linear model is

linearized and then analyzed using frequency response and/or root-locus

methods.

Analyze closed-loop system. Computer simulations are run with the feedback

system, the controller gains are adjusted to create the desired control.

Applying classical control techniques, the controller model is generally first

designed in continuous-time. After a satisfactory response is achieved the system is

transform to discrete-time and tested again for satisfactory response.

For this example the SpeedController developed in Chapter III is implemented

with the actuator model. To analysis the system the loop between the controller and plant

is broken as shown in Figure 5.5. The system is linearized using the Xmath command

sys=lin(" Super Block name"). The linearized model can be used to analyze the system

using root-locus methods and Bode frequency response methods. The root-locus and

Bode plots, shown in Figure 5.6, are generated using the Xmath commands: rlocus(sys)

and bode(sys). After a satisfactory response is obtained, the system is transformed to

discrete-time and tested again.

57

Controller Model
98 199

1

-CD CD-

In

~r\ C
SUPER

BLOCK 0
1 +

s

X0= 0 Continuous

Figure 5.5: Broken-Loop Block Diagram

Output 1

-120

200

 -i<^- i --I 1- i -i-t-i-i- -»- ' ~ r - t - t -i- » IT r r — -i- -r-r"k-i-i-t-

. • -» —«—•_ a -;-;-;-; 1 L.J. J.I.IüI i. -^Xl- -■__•. J _L L L

i... _ i _«.

Fraquency [Hz]

Figure 5.6: Bode Plot

58

C. HARDWARE-IN-THE-LOOP TESTING

Hardware-in-the-loop testing is where the feedback system is tested with some or

all of the actual hardware. In this case, the design will include the actuator, the actuator

model and the Speed_Controller, as shown in Figure 5.7. This design allows the

controller to be simulated with the actuator model or conduct HITL testing. If the

actuator model is accurate and the controller design is correct, there should be no

apparent difference in the performance of the controller. If the actuators are not modeled

well, the test of the controller may indicate that the controller works as designed while

the HITL test may show that the feedback system is unstable.

ny .Vh _/T\ Vd

CD* !f

CD01-0- „i US
Q>2

Cal_gwitch

r« u3 — *

err1 ■*' +»(?}

o

XSP-—

Vol tS_i_poq

Y- JOO/ira - VO'IDl - U2i

aw_2_pu»
TE

Y« 0.00041*11 * 0.053 autv..evcU ^

SUPER
BIOCX >J

H»

Qy Ltl «

Jl — -«

Variable G&ic

Eä^ar-saia.

198

T= U1-U2

Controllar

2-1

X0= 0

Figure 5.7: HITL Test SystemBuild Block Diagram

The simulation includes two switches for controlling the desired simulation state.

The three simulation states are:

• Sensor calibration

• Actuator model

• HITL

The calibration switch controls which input command will be used by the

actuators. With the calibration switch On, the command input Degcmd is used. When

59

the switch is Off, the commanded input is from the error signal of the Vel_cmd in the

loop. The HITL switch will control which test is desired: the computer actuator model or

the actual hardware. Table II summarizes these switch functions. The interactive

animation page used to monitor and control the model is shown in Figure 5.8.

Calibration Switch

On

Off

Off

Table II: Simulation States

HITL Switch

X

Off

On

Simulation

Sensor Calibration

Actuator Model

HITL

Cal_sw

On

Off1

Calibration

VD
0,00

VPIOO

O.QQ

v»aoo
0,00

Voltage (v<3) Degrees Sensed

W°- 14.00 »"*" """*■ 14.00

HITL sw

On

Off

Speed Controller
Speed_cnd (input)

a i o.oo i ■
+

i ■ i ■ i ■ i ■ | • i ■ i ■ i ■-[

Speed (output)

14.00

Variable Gain

1,00

+
pri'l'iT

Figure 5.8: IA Screen for HITL Test

The HITL design includes a variable gain block, which permits the user to adjust

the gain during the testing. The gain margin can be found experimentally by running the

HITL test and slowly increasing the gain until the system goes unstable. The results are

60

shown in Figure 5.9. The gain margin when determined experimentally is approximately

24 (-28db) which matches the gain margin found from the root-locus and bode plots.

25

24

.3 23
58
o
J

22

21

20

300

. '___ .. 1 L__ _.____!_... _-..»

Time (sec)

Figure 5.9: Gain Margin Results From HITL Test

61

62

VI. ALTITUDE CONTROLLER DESIGN PROJECT

This chapter details the design and implementation of a digital controller utilizing

the rapid prototyping system. Applying classical control techniques, the goal is to design

a PI controller to be implemented on the UAV FROG that will track constant altitude in

steady-state.

A. DESIGN REQUIREMENTS

Design a PI controller for the combined model of the FROG and autopilot that

satisfy the following requirements:

• The feedback system must be stable.

• The steady state tracking errors to constant altitude commands must be zero.

• The overshoot to step commands in altitude should not exceed 20%.

• The rise time in response to a step altitude command should be about 30

seconds for a 100 ft climb.

B. FROG AND AUTOPILOT MODELS

The first step in the design process is to create a model of the aircraft. This

model is developed from the equations of motion for the platform. A nonlinear model is

first formed in a block diagram representation of these equations. The nonlinear model is

then linearized about a desired trim point to create a linear model. There is also an

autopilot installed in the FROG that must be modeled. The autopilot controls the elevator

and aileron to command constant climb rate hc and constant yaw rate rc. The

SystemBuild model for the combined FROG and autoplot was developed by a previous

thesis student [Ref 7] and is shown in Figure 6.1, see Figure B.4 for the autopilot

SuperBlock.

63

To determine the bandwidth available , the control bandwidth is first

determined. Figure 6.2 shows the -3db cutoff frequency equal to 2 rads/sec.

Qys-ssä.

rr>hc CT*3

autopilot

SUPER

BLOCK 5>
Continuous

Ircxi

c
Lev_c

Ll c

2
SUPER

BLOCK

Continuous

Figure 6.1: FROG and Autopilot Models

30 r -* .-

-SO

20O

T ; i ;::::! i TTTTim ! TTTTT771 :—: : :::::1 ?—* * = »TTH •—t ; ;: n:

Figure 6.2: Elevator Control Bandwitdh

64

C. FEEDBACK CONTROLLER DESIGN

The next step is to design a PI controller that satisfies the requirements outlined in

section A. This is an iterative process employing various methods with the controller

gains being the design knobs used to meet requirements of response time, overshoot, and

command and control loop bandwidths.

Applying classical control techniques, the initial controller gains are generally

first obtained for continuous-time model. After a satisfactory response is achieved the

system is transformed to discrete-time and tested again for satisfactory response.

1. Basic SystemBuild Model

The basic model is constructed with a PI controller and the complete FROG,

autopilot, and actuator model developed in the previous chapter, and all known delays

and nonlinearities. The known delays include: a transmission delay of 200 milli-second

between the ground station and the FROG, and an update rate of approximately one

second for the Global Positioning System (GPS) position. To model the GPS a ZOH

function is developed using a discrete gain block with magnitude one and a sampling rate

of T= 1 (sec). The complete system is shown in Figure 6.3.

Figure 6.3: Basic SystemBuild Model for Altitude Controller

The following values of the PI controller gains were calculated to achieve the

design requirements:

65

Figure

£, = 0.01
£,=0.16

The basic system is simulated using Xmath, and the step response is 5

6.4.

shown in

100

00

-•O

20

»---r ~ ———.

20

15

0

. i

\ *

V =
\ •

^-L_
» 20 40 eo so 100

Figure 6.4: Step Response for Initial Design

A number of unsuccessful iterations were tried to reduce the overshoot of the step

response while maintaining system stability. The nonlinear system is linearized as

described in the next section. The linear model is then analyzed using root-locus

methods and Bode frequency response. The analysis is demonstrated below.

Consider the system transfer function

\.y m _ iK/s+Kp).Pis)
K l + L(s) ! + (% + *,)■/»(,)

where

66

L(s)=C(s)-P(s)

This results in an extra zero in the numerator at ~ yK , causing the overshoot.

Therefore a second design was developed. The PI controller was modified, as shown in

Figure 6.5.

K
■o

A
K/s -o

A-

K„

P(s)

Figure 6.5: Modified PI Controller

Now the system transfer function is

h_

k.

K, P(s)

1 + K,
s P

P(s)

L{s)

This system was implemented using delta implementation [Ref. 8], as shown in Figure

6.6. Note that SystemBuild does not have a differentiator block, therefore the following

approximation is used:

5->
es + \

where s «1

This design showed a significant reduction in the amount of overshoot. The

system response is shown in Figure 6.7. The initial value for Kt produced a slower then

desired response and was increased to .2 rads/sec. With a satisfactory step response

observed in position and climb-rate, another simulation was run to check aircraft

response to altitude commands, Figure 6.8.

67

O^G^

Figure 6.6: CTS Altitude Controller

0 . i - .VL j_ j _ m ; ■

ti \t— ____; _ ; ; ...__*.-____„... _.„j

& *■ • ■ ■ ■ 1 • . . «_—. . . . i__ _ :
*IO GO

Tim«

Figure 6.7: Step Response for PI Controller

68

Figure 6.8: Dynamic Response of Model

69

2. Linearized Model: Further Analysis

To determine the stability margins of the system the root-locus and Bode analyses

were done. The loop between the controller and plant was broken, Figure 6.9, and the

system was linearized. The interactive root-locus feature of Xmath was used to

determine the location of the system poles and the gain margin. The final results are

shown in Figure 6.10, with a gain margin of-16db. The Bode plot was then generated

and the command bandwidth of 0.2 rads/sec and the phase margin of 70 degrees were

obtained, Figure 6.11.

The system was then discretized by transforming the SystemBuild block diagram.

Note: delay blocks must be added to each integrator to avoid algebraic loop in RealSim.

The differentiator approximation used here is:

f TV V1

s ->
Tz
z-\ 4-(i-^')

The discrete model is shown in Figure 6.12.

Figure 6.9: Broken Loop Block Diagram

70

Figure 6.10: Root-Locus Plot

a.

. . ;...... | . ;::;:; r —

u
-100

fTffi i • ■

o

u|
too . ; _;_ _;— ;—;_;_;_;_; ; ^ ; ;_ j. _'_;_•_■

J 4-i-4-r-rrtT'" ! i iTTTH-L^^
; ? \

zoo : : : 1 : : ! :: ! : ! ! ■ ! ! ■ • "^

Froquoncy [rad/soc]

Figure 6.11: Bode Plot

71

o-r©—• ■r®

z

YO- 0

I2ä
Tz

z -
0

Es>—

Var..qaln

r
-OH

z-5 U«-l
YO- 0

autopilot

SUPER

BLOCK

e^-

SUPER

BLOCK

nr
i

TO" 0

SUPER

BLOCK
mCiD

AT
pps_hold

SUPER
BLOCK

Figure 6.12: Discrete Altitude Controller Model

D. HARDWARE-IN-THE-LOOP TEST

The next step is a hardware-in-the-loop test. The actuators on the AROD set up in

the avionics lab are the same actuators that control the elevator for the FROG. Therefore

the HITL test can be conducted as described in the HITL section of this thesis. The

necessary conversion blocks for the PWM output signal and voltage input signal were

added to the controller design. Since the elevator command from the autoploit and

FROG model is in radians, two more blocks were added to convert degrees and radians.

The HITL SystemBuild model for the HITL testing is shown in Figure 6.13 and the test

results are shown in Figure 6.14.

E. IMPLEMENTATION AM) FLIGHT TEST

1. Implementation

The final step is to implement the controller into the flight management system

for the FROG. This system manages a number of functions including navigation and

flight control. The SuperBlock structure of the flight management system is separated

72

E>
4 f>"*s^ "

Figure 6.13: HITL Test Model For Altitude Controller

Figure 6.14: HITL Step Response For Altitude Controller

73

into five lower level SuperBlocks according to their function. The altitude controller is

inserted into the control SuperBlock as shown in Figure 6.15. Appendix B contains the

hierarchy for the SuperBlocks that make up the complete flight management system.

The UAV can be controlled by either the computer or RC pilot with a standard

RC Futaba transmitter. A complete description of the FROG and its components is given

in [Ref. 9]. To prevent large control inputs during transitions from RC pilot to computer

control, the altitude controller is implemented using a delta altitude as the input

command. As an example, if the user desired to maintain level altitude at hand off, a

command of zero should be given. A script block is used to freeze the GPS altitude

position at hand-over. The delta commanded altitude is then summed with the frozen

altitude position and is used as the entered altitude command for the controller. The

controller outputs a climb-rate command to the autopilot. The feedback loop uses the

GPS altitude position referenced with respect to the local tangent plane (LTP) at the field.

The orientation of the frame is specified as North-East-Down (NED), therefore a

conversion gain is added to the feedback loop to reverse the sign. A conversion gain is

also added to the controller's output. The FROG autopilot model differs from the actual

autopilot in the units used for the entered climb-rate command. The model uses (ft/sec)

where the actual autopilot uses (ft/min). The two switches are part of the wind down

loop. If either or both switches are in the "OFF" position, the integrator is forced back to

its initial value. This is done to prevent initiation of the controller at a previous state.

Once the controller is added to the flight management system, the user interface is

added in the Interactive Animation screen used to monitor and control the FROG. The

necessary input/output devices are added to the existing throttle control IA page, shown

in Figure 6.16. For the initial flight testing, the screen is designed to display a number of

performance variables not normally used for an operational flight display. These displays

help evaluate whether the controller is working properly. The two digital output displays

show the commanded altitude and the actual GPS altitude in feet. When the altitude

controller is operating and working properly, the altitude readouts should match. An

open loop input for the climb-rate is also added. With this feature the climb-rate

command can be given directly to the autopilot by the user. The input slide gage is added

74

to adjust the gain during the test. The trainer light in the middle of the page indicates

who is controlling the vehicle, the computer or the pilot.

Hold trt PWj

E>->
Block

Script

E3ääSGLl£2-£t_ £> üO-

■pfylthold'w

 E3
5aS£-S&05

tr«lnlng awl ch MC switch
" Dtr»""rM' ""I ul Lil p»'t ■»[S. " tptntnTMi off M U. Tsq

<]
©^

Ear

Figure 6.15: Altitude Controller SuperBlock

Altitude Hold

Alt Hold swicch '

U[Hold On

Me Hold Variable sain

I l.oo I üf

r> -I ■ i ■«■ i ■ ■ ■ i ■' ■ i

CLAltCMD
14.00

Z Dot OL

I 000 I H§

I ■ I • 1 ■»■ I ■ f I ■»• I

CL Dolt» Alt

pU I 0.00 I

 I
GPSAIt(msl)

14.00

Prainer Switcl

O

z_dot_c

3.00

alt_err

3 .00

. dot/z dot Variabla c^ir.
rso.oo

r',i,|T',r|,l

Heading
Psi Dot OL

i o.oo} mn

+
I'I'I'I'I'ITM

Throttle Cmd Inputs
3L / CL Switch

A/P On

Acceleration Oain
pi I 5,00 I ßip

I'lV'T'Tl'l
throttle Gain

HU I 1.00 I ■
rl'l"'l'''l,''l

CL Speed Commanded
14.00

OL Delta Speed

I o.oin

r'-i'i'i'i-i'i-i

PITOT

14.00

CL Dalta Spaad

GPS

14.00

Figure 6.16: IA for Altitude Controller

75

2. Flight Test

The flight test is conducted at a RC modelers club airfield located near the Naval

Postgraduate School. The RPS is completely portable, and fits easily in a car for

transport to the field. A flight plan is written a couple of days prior to the flight

describing the conduct of the test flight. After all flight checks have been completed, a

face-to-face pilot briefing is given to review the flight conduct and hand-off procedures.

Normally the hand-off is accomplished during steady-state level fight.

Eight test runs were performed during two test flights. The data acquisition editor

feature of the RealSim software was used to record the data. For each test run, the

Airspeed Controller was used to maintain constant airspeed. The first three runs tested

the performance of the Altitude Hold Controller in a turn. From the ground station, it

appeared the controller maintained altitude within a +50 ft band. The next three runs

tested the controller's performance in response to climb commands. A 100 ft climb

command was given from a straight and level altitude. Each time the controller

responded well to the climb commands and leveled off appropriately. Once level, the

FROG seemed to be chasing altitude. From observation, it was concluded the controller

was chasing altitude due to GPS drift. Secondly, the aircraft was making rapid changes

in pitch intermittently due to the latency in GPS data, as seen in Figure 6.17. To reduce

the pitch activity a filter (s/s+3) was added to filter GPS altitude. Two more runs were

conducted with the filtered GPS data.

The test results for the controller in a turn are shown in Figure 6.17. The altitude

error and commanded climb-rate from the controller show correct operation. As

expected, the drift in the GPS caused the controller to chase altitude. The data shows

many gaps of 3-5 seconds with no GPS update. Figure 6.18 details the results from the

climb commands. As designed, the controller climbed to altitude and smoothly leveled

off. The commanded climb-rate was well within the aerodynamic limits of the FROG

and appropriate for the climb. The performance of the controller with the filtered GPS,

shown in Figure 6.19, was unstable with the errors slowly growing.

Overall, the Altitude Controller performed as designed. The commanded climb-

rate in response to the altitude error is good. The shortfall is the GPS sensor. Current

plans include upgrading the FROG's pitot-static system. With a reliable altimeter used as

76

feedback instead of GPS, a substantial improvement in controller performance would

result.

2

la
U

E e
:-
©
•9
N

370

360

350

340

330

320

310

20

10

0

-10

-20

-30

-40

-SO

-60

1000

, 4771
LUii ...

x^pi::::: l-r

-500

-1000

b^Jfe::::::.:^ \ : : ...JJ : : h

 L ■.■.1......J77-..: ,
 : :Lrd i

= i :

10 15

Time (sec)
20 25

Figure 6.17: Flight Test Results for Turn

77

a

340

320

• I i : j i

280

260
!

240

a!

200

100

50

U

t=r=l......

\
J ^4^^n |

J

N ^^jT ^ ^P*M

 1 1 I P

2000

g iooo
o
u
J
e

■a
(4 -1000

■2000

•3000

±=SF
20 60

Figure 6.18: Flight Test Results for Climb

78

SÜU

500

480

7' 460

et 440

420

400

380

650

600

550

500

450

400 ■•

350

200

150

100

50

0

-SO

-100

-ISO

2000

ÖEEEEEEEEE

^isggM

Figure 6.19: Flight Test Results for Filtered GPS

79

80

VII. CONCLUSIONS AND RECOMMENATIONS

A. CONCLUSIONS

The Advanced Controls of Aerospace Vehicles course, offered at the Naval

Postgraduate School, provides an excellent opportunity for students to apply classical and

modern control methods to the design of basic controllers. A strong foundation is

presented on the operations and analysis of sampled-data systems. The rapid prototyping

system, developed by the department, is an excellent design tool and allows the student

valuable hands-on experience in the design, implementation and flight testing of control

algorithms for unmanned air vehicles. The ability of the application software, RealSim,

to automatically generate higher-language code and eliminate the time consuming task of

programming the code for a working model, enables design projects ample time to be

completed in the twelve weeks allotted for the course.

Even though the RPS is still in its initial stages of development, it has generated a

number of thesis opportunities, with many more foreseen in the future. Utilizing mostly

off-the shelf technology, the cost of this educational tool will be minimal.

B. RECOMMENDATIONS

Considering the conclusions stated above and the knowledge gained in the course

of instruction given in the Advanced Controls of Aerospace Vehicles, the following

recommendations are forwarded:

• Investigate scheduling this course, and its prerequisites, earlier in the avionics

curriculum. The UAV program developed by the department produces many

excellent opportunities for thesis work. To allow ample time for students to

complete their thesis work, this class should be scheduled prior to the last

quarter of instruction.

• Presently there are no elective courses offered by the aeronautical engineering

department in the area of digital control. Investigate the establishment of an

81

elective course that would introduce to the student system identification

methods and advanced multivariable and optimal control procedures.

Devote more classroom time to Design of Digital Control Systems Using

Transform Techniques presented in Chapter V of [Ref. 1], and Design of

Digital Control Systems Using State-Space Methods presented in Chapter VI

of [Ref. 1]. Less time should be given to Chapter II of [Ref. 1], Linear,

Discrete, Dynamic-Systems Analysis: The z-Transform. Material covered in

chapter 2, discrete Fourier transform (DFT), z-transform, and block diagram

descriptions, should be introduced during the prerequisite course, EO 2402,

Introduction to Linear Systems.

Establish a library within the avionics lab containing all previous thesis work

and material related to the UAV FROG. Many of the design projects and

future thesis work will build on the work from past projects. Good

documentation is required to keep track of modifications, input/output

variables, and improvements made to the system.

Purchase a second target computer to supplement America. Currently the

computer lab has only one computer with the AC 100 model set-up and often

two or three students end up waiting for access to America to compile and link

their programs or to run the hardware setup.

82

APPENDIX A: HCE SCREENS FOR HITL PROJECT

Hints
Use left mouse button, tab, shift-tab, or return, to select items,!
Use middle mouse button on toggle item3 for pull-rdown menu's;

<-- SB INPUT —> < '---- OEUICE — > < ATTRIBUTES >
mod ehttlinitiai_-value f inal_ value V\x- >\s 'Chan iabel(4:10) type

4;a? vetternd> MONITOR-INPUT
2 - Vh" IP_riiflDC
3 Vc. IP_HiADC ;;.:
4 vo -. MONITOR-INPUT
5'-/ VplOO MONITORwINPUT
& VmlOO MONITOR-INPUT

7 deg_cmd MONITOR-INPUT
8 NO_DEVICE

9 NO-DEVICE
10 NO-DEVICE

0

J'O"

0

0

:^;:

i-O'i

; -0';

<>
:;0hi

0

"Pi

o

o

Device-Type
«ONITORIINPUT

Module Channel-Hutaber

InitialiValue.........
Minimum-Value.
Offset...;
SbHuInputToUserClient..

CiflMCEt

-1.0E+3? Maximun-Ualue :. l.OE+37
0. Scale-Factor : 1.

: disconnected SblnpütFronUser : cohnect^dJ

' Grouping Uieuing-Attributes
Nby_SB_channel initiäl_and_final.values

SelectiqniMode!
single

iäffp

Figure A.1: HCE Input Screen

83

Hints
Uae lBFt mouse button, tat), ahift-tab, or return to select iteraa,
Use middle mouse button an toggle itetrs for puil-douin menu's.

>- *>u ouipur -> < utuxcfc > c ftfiKiburts 1
chan label(i: 10 > type

t veL-aut ND-DEVICE
2 duty-cycle IP_68332_PUM
3 deg_aen ND-DEVICE
4 Vd NO-DEVICE
B ND-DEVICE
6 -NO-DEVICE
7 NQ-DEVICE
ß ND_DEVrCE
9 NO-DEVICE
tO NO-DEVICE

nod ch* initial-value final_value

0
4
O
0
o
0
0
0
0
o

o
l
0
0
0
0
0
ö
0
0

0
o
o
o
0
o
o
o
o
o

O e wiee_Type
NO-DEVICE

I &

\i
v'lw

JJJij;

V
tfadule Chonnel-Hunber

0 ■'■■■"-:■'■ . '0 "■..

Initial-Value. ; 0.
nlninum-Value.: -1.OEK37
Offset :0.
SbOutputToUeerCliant..". : connected

CANCEL

Fiiml-Ualue........... : 0,
riaxinun-Value. : l.QE*37
Scale-Factor..........: l.

Grouping Uieuinn-flttributes Selection-Mode
by_SB_channBl initial-end-final-values single

DOHE

Figure A.2: HCE Output Screen

84

APPENDIX B: ADDITIONAL SUPERBLOCK DIAGRAMS

Figure B.1: Flight Test SuperBlock

85

, ü
n

F

o
o
*b

S
U

P
E

R

B
L

O
C

K

o
i I

E
J

I

Figure B.2: Flight Management SuperBlock

86

> f ö f »I r ft X! 4:

r- JJ

*i >
c ■o a a

a a 3

c 1

08886il@ÖÖÖÖ @

iiii 1 £ ö ä

Figure B.3: Control Block SuperBlock

87

BEIRR 0

i

+.
-en 4>

"

x t
ii n 1 H
o 1

P

Figure B.4: FROG Auotpilot Model

88

LIST OF REFERENCES

1. Franklin, G. F., Powell, J. D., Workman, M. L., Digital Control of Dynamic Systems,
Addison-Wesley, 1990.

2. Strum, R. D., Kirk, D. E., Contemporary Linear Systems, PWS Publishing Company,
1996.

3. Kaminer, 1.1., Class Notes for AA4342, Naval Postgraduate School, Monterey, CA,
1997.

4. Integrated Systems Inc., MATRLXX Product Family System Manuals, SystemBuild,
Version 5.0, 1996.

5. Moats, M. L., Automation of Hardware-in-the-Loop Testing of Control Systems for
Unmanned Air Vehicles, Master's Thesis, Naval Postgraduate School, Monterey, CA,
1994.

6. Integrated Systems Inc., MATRLXX Product Family System Manuals, RealSim,
Version 5.0, 1996.

7. Papageorgiou, E. C, Development of a Dynamic Model for aUAV, Master's Thesis,
Naval Postgraduate School, Monterey, CA, March 1997.

8. Pascoal, A., Class Notes for AA 3341, Naval Postgraduate School, Monterey, CA,
1997.

9. Komlosy III, J. A., Applications of Rapid Prototyping to the Design and Testing of
UAVFight Control Systems, Master's Thesis. Naval Postgraduate School, Monterey,
CA, March 1998.

89

90

INITIAL DISTRIBUTION LIST

Defense Technical Information Center.
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

Doctor Isaac I. Kaminer, Code AA/KA
Department of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, California 93943-5121

Doctor Rüssel W. Duren, Code AA/DR
Department of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, California 93943-5121

Department of Aeronautics and Astronautics.
CodeAA
Naval Postgraduate School
699 Dyer Rd. Rm. 137
Monterey, California 93943-5106

LCDR Steven J. Froncillo....
712 Country Club BLVD.
Chesapeake, Virginia 23460

91

